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One-dimensional quantum models with correlated disorder versus classical oscillators
with colored noise
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We perform an analytical study of the correspondence between a classical oscillator with frequency per-
turbed by a colored noise and the one-dimensional Anderson-type model with weak correlated diagonal dis-
order. It is rigorously shown that localization of electronic states in the quantum model corresponds to expo-
nential divergence of nearby trajectories of the classical random oscillator. We discuss the relation between the
localization length for the quantum model and the rate of energy growth for the stochastic oscillator. Finally,
we examine the problem of electron transmission through a finite disordered lattice by considering the evolu-
tion of the classical oscillator.
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I. INTRODUCTION

This work serves the goal of establishing some quant
tive links between two seemingly unrelated fields: quant
disordered models on the one hand and classical stoch
systems on the other. More precisely, we analyze the r
tions existing between a classical oscillator with frequen
perturbed by a feeble noise and the one-dimensional~1D!
Anderson-type model with a weak diagonal disorder. O
main interest is incorrelated random potentials and, corre
spondingly, incolorednoise for the stochastic oscillator.

Recently, the role of correlations in random potentials
quantum models has been the object of intense scrutiny
particular, it was shown that specific long-range correlatio
in potentials may lead to the emergence of a continuum
extended states even in 1D lattices~see, e.g.,@1# and@2# and
references therein!. In this paper we show that the phenom
enon of Anderson localization has its counterpart in the
ergetic instability of a random oscillator. Specifically, th
mobility edge generated in the 1D quantum models by lo
range correlations is equivalent to the suppression of the
ergy growth of the stochastic oscillator due to temporal c
relations of the frequency noise.

We use the correspondence between stochastic oscill
and disordered solid state models in order to study the tr
mission properties of finite lattices by making use of t
dynamical analysis of an oscillator with noisy frequen
This approach allows us to put in a new perspective
problem of electronic transport in disordered lattices and a
to gain new insight on the dynamics of random oscillator

We observe that the analogy between stochastic osc
tors andcontinuousdisordered models of the Anderson kin
has been investigated before~see, e.g.,@3#!. The novelty of
the present work resides mainly in the following two fe
tures. In the first place, we analyze the correspondence
tween a stochastic oscillator and adiscretelattice, which is
not so straightforward as the analogy of the former sys
with a continuous Anderson model. The second relevant
pect of this work is that we focus our attention on the phy
cally new effects of long-range correlations.
1063-651X/2001/64~6!/066120~10!/$20.00 64 0661
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This paper is organized as follows. In the following se
tion we define the models that constitute the object of
study, and we make some general considerations on t
analogies. In Sec. III we rigorously analyze the relation b
tween the localization of electronic states for the Anders
model and the orbit instability of a random oscillator. In Se
IV we discuss how correlations of the frequency noise c
suppress the energy growth of the stochastic oscillator.
analogy between a random oscillator and a disordered c
is then used in Sec. V to study the electronic transmiss
through a finite disordered lattice. In Sec. V we also disc
the relation between energetic instability and orbit div
gence for a random oscillator. Finally, Sec. VI is devoted
summarizing the conclusions.

II. DEFINITION OF THE MODELS

The Anderson model is defined by the discrete station
Schrödinger equation

cn111cn211«ncn5Ecn ~1!

wherecn is the amplitude of the wave function at thenth
site of the lattice and disorder is introduced via the site
ergies«n which in the following are assumed to berandom
correlatedvariables. We do not restrict our considerations
a specific distribution for the random potential«n ; we only
suppose that it has zero average^«n&50 and that the binary
correlator^«n«n1k& is a known function of the indexk. We
also assume that the correlator^«n«n1k& does not depend on
n and that it is a decreasing function ofk. In other words, we
make the physically sensible assumptions that the rand
succession$«n% is stationary, and that correlations dec
with increasing distance. We restrict our analysis to the c
of weak disorder, defined by the condition

^«n
2&!1.

In the preceding expressions the symbol^•••& stands for the
average over a single disorder realization defined by the l
©2001 The American Physical Society20-1
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^xn&5 lim
N→`

1

N (
n51

N

xn ;

we assume that this average is equivalent to the average
disorder realizations~ensemble average! for the succession
$«n%.

It is known that the model~1! can be put into correspon
dence with the kicked oscillator defined by the Hamiltoni

H5vS x2

2
1

p2

2 D1
x2

2 S (
n52`

`

And~ t2nT!D , ~2!

which represents an oscillator whose momentum underg
instantaneous variations of random intensityAn at regular
time intervals. The connection between the models~1! and
~2! has been discussed before~see, e.g.,@4#!. Basically, the
correspondence consists in the fact that, by integrating
Hamilton equations of motion of the oscillator~2! over the
period between two successive kicks one gets the map

xn115xn cos~vT!1~pn2Anxn!sin~vT!,
~3!

pn1152xn sin~vT!1~pn2Anxn!cos~vT!,

wherexn andpn stand for the position and momentum of th
oscillator immediately before thenth kick. This map is
equivalent to to the Schro¨dinger equation~1! which defines
the Anderson model. Indeed, by eliminating the moment
from Eqs.~3!, one gets the relation

xn111xn211An sin~vT!xn52xn cos~vT!

which coincides with the Schro¨dinger equation~1! provided
that the positionxn of the oscillator at timet5nT is identi-
fied with the electron amplitudecn at thenth site and that
the parameters of the kicked oscillator are related to thos
the Anderson model by the identities

«n5An sin~vT! and E52 cos~vT!, ~4!

The formal correspondence between the quantum m
~1! and the kicked oscillator~2! raises the question o
whether a similar analogy can link the Anderson model t
random oscillator whose frequency is perturbed by a c
tinuous noise rather than by a succession of discontinu
and singular kicks as in model~2!. In other words, one is led
to infer the existence of close ties between the quan
model ~1! and a stochastic oscillator defined by the Ham
tonian

H5vS x2

2
1

p2

2 D1
x2

2
j~ t !, ~5!

wherej(t) is a continuous and stationary noise. Notice th
these requirements onj(t) set the random oscillator~5! and
the kicked oscillator~2! in two different categories within the
vast family of stochastic oscillators, since the succession
kicks in the model~2! is a nonstationary and strongly dis
continuous random process. Consequently, the connec
between the Anderson model~1! and the kicked oscillator~2!
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does not prove at all the equivalence of models~1! and ~5!
but only constitutes a hint that such a link may exist.

In our analysis of stochastic oscillators, we will focus o
the Hamiltonians represented by Eq.~5!, completing the
definition of the model by further assuming that the no
j(t) has zero average and that its binary correlator is
known function

^j~ t !&50 and ^j~ t !j~ t1t!&5x~t!. ~6!

In Eq. ~6! the symbol̂ •••& is used for the time average

^ f ~ t !&5 lim
T0→`

1

T0
E

0

T0
f ~ t !dt,

which is assumed to coincide with the ensemble average
the processj(t). Notice that we do not restrict our conside
ation to the case of white noise, but we are instead intere
in the general case ofcolorednoise. Finally, we require tha
the noisej(t) be weak; in other words, we assume that t
fluctuations of the frequency around its average value
small.

Below we show that oscillators of the kind~5!, with the
above-mentioned noise features, are equivalent to the An
son model~1! if two further conditions are met. First, th
correlation function has to be of the form

x~t!5
^An

2&
T (

k52`

1`

z~k!d~t2kT!, ~7!

where the symbolz(k) stands for the normalized binary co
relators

z~k!5
^An1kAn&

^An
2&

~8!

of the random variablesAn specified by the second cond
tion. Our second requirement is that the unperturbed
quencyv of the oscillator and the parametersAn must be
related to the parametersE and «n of the Anderson mode
through the identities~4!.

Notice that the links established by these two conditio
associate key features of the noisej(t) to the corresponding
properties of the random potential«n . Indeed, once the ran
dom variables«n and An are connected by the relation~4!,
the correlators~8! become identical to the normalized cor
elators of the potential«n . Therefore the spatial correlation
of the disorder in the Anderson model are mirrored by te
poral correlations for the noisej(t). In the special case in
which the disorder in the Anderson model isuncorrelated
~i.e., ^«n1k«n&50 for kÞ0), the noise for the random osci
lator is white @i.e., ^j(t)j(t1t)&}d(t)#. One can also ob-
serve that the case of weak disorder in the Anderson mo
corresponds to that of weak noise for the random oscilla
since the condition̂ «n

2&!1 entails the consequence th
^An

2&!1 ~except that at the band edge, i.e., forvT→0,
which is a special case where anomalies are expected to
and will not be considered here!.
0-2
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Obviously, we must endow with a well-defined meani
the notion of ‘‘equivalence’’ used above to describe the c
nection between the Anderson model~1! and the random
oscillator defined by Eqs.~5! and ~7!. We speak of the
equivalence of the two models in the sense that the t
evolution of the orbits of the random oscillator closely m
rors the spatial variation of the electronic states on the latt
More precisely, the exponential divergence rate of nea
orbits turns out to be equal to the inverse localization len
of the Anderson model.

The correspondence between the random oscillator~5!
and the Anderson model~1! is to some extent surprisin
since the former is aclassicalsystem and iscontinuousin
time whereas the latter model isquantumand discrete in
space. It is therefore particularly interesting to notice h
close the two systems turn out to be. To sum up, one of
main results of this paper is that the Anderson model w
weak correlated disorder has a close analog in a rando
oscillator with frequency perturbed by acolorednoise. This
equivalence generalizes the result established in Ref.@5#
where the Anderson model with uncorrelated disorder w
linked to a random oscillator of the kind~5! with white
noise.

III. THE LYAPUNOV EXPONENT

In the previous section we have described the anal
between the Anderson model~1! and the random oscillato
~5! as being based on the correspondence between the
tronic wave function of the former model and the space
bits of the latter system. To prove this analogy, we will co
pute the divergence rate of nearby trajectories of the rand
oscillator, i.e., its Lyapunov exponent and we will show th
when the conditions~4! and ~7! are met, the Lyapunov ex
ponent coincides with the inverse localisation length in
Anderson model,l5 l `

21 . We define the Lyapunov exponen
through the formula

l5 lim
T0→`

lim
d→0

1

T0

1

dE0

T0
ln

x~ t1d!

x~ t !
dt. ~9!

To compute this expression it is convenient to introdu
the polar coordinates defined through the standard relat
x5r sinu, p5r cosu. This allows one to cast Eq.~9! in the
form

l5 lim
T0→`

1

T0
E

0

T0ṙ

r
dt.

To proceed further, we consider the dynamical equations
the random oscillator in polar coordinates

u̇5v1j~ t !sin2 u, ~10!

ṙ 52
1

2
r j~ t !sin 2u. ~11!

Using the radial Eq.~11!, the expression for the Lyapuno
exponent can be finally put into the form
06612
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l52 lim
T0→`

1

2T0
E

0

T0
j~ t !sin@2u~ t !#dt

52
1

2
^j~ t !sin@2u~ t !#&. ~12!

The problem of computing the Lyapunov exponent~9! is
thus reduced to that of calculating the noise-angle correl
that appears in Eq.~12!. This can be done in the following
way, which is the extension to the continuum case of
procedure adopted in@1# for the discrete case. First, one in
troduces the noise-angle correlator defined by the relatio

g~t!5^j~ t !exp@2iu~ t1t!#&.

Starting from this definition, in the limite→0 one has

g~t1e!5^j~ t !exp@ i2u~ t1t!#@112i u̇~ t1t!e#&1o~e!.

With use of the dynamical equation~10! one can further
write

g~t1e!5g~t!~112ive!12i e^j~ t !j~ t1t!

3exp@2iu~ t1t!#sin2u~ t1t!&1o~e!.

In the limit of weak noise, one can factorize the correla
that appears in the right-hand side of the preceding equa
and take the average over the angular variable using a
distribution for u. Indeed, whenj(t)→0, Eq. ~10! implies
that u̇.v so that, after a conveniently long time, one c
expect the angular variable to take values uniformly distr
uted in the interval@0,2p#. As a consequence the noise-ang
correlator must obey the relation

g~t1e!5g~t!~112ive!2
i

2
x~t!e1o~e!, ~13!

wherex(t) is the correlation function~or noise-noise cor-
relator! defined by Eq.~6!. On the other hand, a simple ap
plication of calculus rules leads to

g~t1e!5g~t!1
dg

dt
~t!e1o~e!. ~14!

Comparing Eqs.~13! and ~14!, one obtains the differentia
equation

dg

dt
~t!52ivg~t!2

i

2
x~t!,

whose solution@with the boundary condition lim
t→2`

g(t)

50# gives the noise-angle correlator

g~t!52
i

2E2`

t

x~s!e2iv(t2s)ds.

Using this result the Lyapunov exponent~12! can be finally
written as
0-3
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l5
1

8E2`

1`

^j~ t !j~ t1t!&cos~2vt!dt, ~15!

which implies that the Lyapunov exponent for the stocha
oscillator~5! is proportional to the Fourier transformx̃(2v)
of the correlation function at twice the frequency of the u
perturbed oscillator.

We are interested in the particular case in which the c
relation function of the noisej(t) takes the specific form~7!,
because we want to prove that in that case the Lyapu
exponent~15! coincides with the inverse localization leng
of the Anderson model~1!. The substitution of the correla
tion function ~7! in the general expression~15! gives

l5
^An

2&
8T F112(

k51

1`

z~k!cos~2vTk!G .

Taking also into account the relations~4! between the param
eters of the systems~1! and ~5!, one can finally write the
Lyapunov exponent for the random oscillator in the form

l5
1

T

^«n
2&

8 sin2~vT!
w~vT!,

w~vT!5112(
k51

1`

z~k!cos~2vTk!. ~16!

This expression coincides with the one given in@1# for the
localization length in the Anderson model with correlat
disorder. The inverse localization length is given by the pr
uct of two factors, namely the Lyapunov exponent for t
uncorrelated disorder case and the functionw(vT), which
describes the effect of disorder correlations~and which re-
duces to unity when correlations are absent!. Formula~16!
thus confirms the equivalence of the quantum Ander
model ~1! with the classical oscillator~5! which had been
inferred in Sec. II by the existence of a third system—t
kicked oscillator ~2!—which was somehow contiguous t
both models~1! and~5!. To sum up, formula~16! allows one
to conclude that the Anderson model with thecorrelateddis-
order has a classical counterpart represented by a stoch
oscillator with the frequency perturbed by acolored noise.
This conclusion generalizes the equivalence establishe
@5# between the Anderson model withuncorrelateddisorder
and an oscillator with the frequency perturbed by awhite
noise.

A remark is in order here: expression~16! for the inverse
localization length of model~1! is correct for all energy val-
ues inside the unperturbed bandexceptthat at the band cen
ter i.e., for vT5p/2 where an anomaly arises and spec
methods are required for the analytical investigation~see,
e.g.,@6#!. This anomaly is a resonance effect inherent in
discrete nature of the model~1! and cannot therefore be re
produced by the continuous system~5!. Other anomalies ap
pear in the Anderson model for the ‘‘rational’’ values of th
energy~i.e., whenvT5pp/2q with p and q integer num-
bers!, but they are effects of an order higher than the sec
@5# and need therefore not be considered here. In conclus
06612
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apart from the exceptional case of the band center, the
namical features of the models~1! and~5! do not differ to the
second order of perturbation theory.

The equivalence of the models~1! and ~5! can be exam-
ined also from a different point of view: that of the corr
spondence between discrete and continuous solid state
tems. Indeed, the dynamical equation for the oscillator~5!

ẍ1vj~ t !x52v2x ~17!

coincides,mutatis mutandis, with the stationary Schro¨dinger
equation

2c91v~x!c5k2c, ~18!

which describes the motion of a quantum particle of ene
E5k2 in a random potentialv(x)52kj(x). Actually, ex-
pression~15! for the inverse localization length has lon
been known to solid state physicists~see, e.g., Ref.@7#! as
the high-energy limit of the Lyapunov exponent for the co
tinuous model~18!; the same formula was later recovered
@3# using the correspondence of Eqs.~17! and~18! to deduce
the Lyapunov exponent~15! from the analysis of the dynam
ics of the oscillator~17!. In the present paper, rather tha
insisting further on the analogy between models~17! and
~18!, we prefer to draw a different conclusion, namely th
the deduction of the inverse localization length~16! for the
discrete Anderson model from expression~15! may be inter-
preted as the proof that the continuous model~18! can be put
into one-to-one correspondence with the discrete lattice~1!
if, and only ifthe correlation function of the random potenti
has the specific form~7!. @Obviously, the transposition o
results from one model to the other requires a proper cha
of the corresponding parameters with relations like~4!; as a
consequence of this swap, the mathematical correspond
of the two models does not imply an exact physical equi
lence. Models~1! and ~18!, for instance, have different un
perturbed energy spectra, defined by the respective dis
sion relationsE52cosk andE5k2.#

IV. ‘‘MOBILITY EDGE’’ FOR A STOCHASTIC
OSCILLATOR

In Ref. @1# the authors used formula~16! to investigate the
problem of the mobility edge for the Anderson model~1!.
They showed that long-range correlations in the disorder
generate a continuum of extended electronic states and
found a way to construct sequences$«n% of site energies
giving rise to a Lyapunov exponent with a predefined dep
dence on the energy. In particular, using this recipe they w
able to construct site potentials that generate a mobility e
even for the 1D lattice~1!.

Here, we show how it is possible to solve the analogo
problem for the random oscillator~5! taking formula~15! as
a starting point. More precisely, we will show how to defin
a continuous noisej(t) such that the correspondin
Lyapunov exponentl(v) has a predefinite dependence
the frequencyv. Since the Lyapunov exponent determin
the asymptotic behavior of the oscillator energy~we discuss
this point more in detail in the next section!, shaping the
0-4
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ONE-DIMENSIONAL QUANTUM MODELS WITH . . . PHYSICAL REVIEW E64 066120
function l(v) through noise control enables one to det
mine the energetic behavior of the oscillator. In particular
the noisej(t) has the appropriate time correlations, the c
responding Lyapunov exponent can sharply drop from p
tive values to zero when the unperturbed frequencyv
crosses a threshold value. In physical terms that means
the energetic growth of the oscillator is suppressed when
frequency reaches a critical value. The existence of a
quency threshold determining whether the oscillator is en
getically stable or not is the physical counterpart of a mo
ity edge, which divides extended states from localized o
in the Anderson model. Thus, in spite of the current wisd
that frequency noise produces energetic instability~see, e.g.,
@8# and references therein!, it turns out that time correlation
of the noise may lead to a suppression of the energy gro
This conclusion follows directly from the known formul
~15!, but, to the best of our knowledge, this implication h
not been discussed before in the literature.

A remark is in order here. Our analysis is based on
perturbative approach justified by the weak disorder assu
tion and our results for the Lyapunov exponent are correc
the second order of the expansion in the disorder stren
One should therefore keep in mind that our use of terms s
as ‘‘mobility edge’’ or ‘‘suppression of the energy growth’’ i
fully justified only within the limits of the second-order ap
proximation.

To construct a noisej(t) that gives rise to a define
Lyapunov exponentl(v), the starting point is the correla
tion function x(t) that can be easily obtained by invertin
formula ~15!

x~t!5
8

pE2`

`

l~v!e2ivtdv.

Once the correlation functionx(t) is known, we can obtain
a stochastic processj(t) satisfying the conditions~6! by
means of the convolution product

j~ t !5~b* h!~ t !5E
2`

1`

b~s!h~s1t !ds, ~19!

where the functionb(t) is related to the Fourier transform
x̃(v) of the noise correlation function through the formul

b~ t !5E
2`

1`Ax̃~v!eivt
dv

2p

andh(t) is any stochastic process such that

^h~ t !&50 and ^h~ t !h~ t8!&5d~ t2t8!. ~20!

Formula~19! defines the family of noises corresponding to
specific form l(v) of the frequency-dependent Lyapuno
exponent and constitutes the solution to the ‘‘inverse pr
lem’’ @i.e., determination of a noisej(t) that generates a
predefined Lyapunov exponent#.

As an example, we can consider the Lyapunov expon
06612
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l~v!5H 1 if uvu,1/2

0 otherwise,
~21!

whose frequency dependence implies that the random o
lator undergoes a sharp transition foruvu51/2, passing from
an energetically stable condition to an unstable one. Follo
ing the described procedure it is easy to see that
Lyapunov exponent~21! is generated by a noise of the form

j~ t !5
A8

p E
2`

1`sin~s!

s
h~s1t !ds,

with h(t) being any random process with the statistical pro
erties~20!.

At this point, it is opportune to stress that the mathema
cal identity of Eqs.~17! and ~18! implies that all features of
the random oscillator~5! are shared by the solid state mod
~18!. Therefore the mathematical results of this section
only imply that noise correlations can make the random
cillator ~5! stable, they also represent a recipe to constru
random potential generating a mobility edge for the mo
~18!.

V. TRANSMISSION THROUGH A FINITE DISORDERED
LATTICE

We are now in the position to see how the analogy
tween the quantum model~1! and the random oscillator~5!
can be used not only to compute the localization length in
Anderson model but also to deal with problems both m
challenging and of greater physical interest, such as the s
of the transmission properties of a finite disordered lattice
this section we show how the random oscillator formalis
allows us to tackle this problem and how it is possible
obtain expressions for the transmission coefficient as a fu
tion both of the sample length and of the inverse localizat
length ~15!.

More specifically, let us consider the case of a 1D dis
dered lattice ofL sites sandwiched between two semi-infin
perfect leads. Mathematically the problem is defined by
Schrödinger equation~1!, where the site energies«n are now
equal to zero forn,1 andn.L, while for 1<n<L they are
assumed to be correlated random variables. In@9# it was
shown that the transmission coefficientTL through the
L-sites segment can be expressed in terms of the clas
map ~3! as

TL5
4

21r 1
2~L !1r 2

2~L !
, ~22!

wherer 1(L) andr 2(L) represent the radii at theLth step of
the map trajectories starting from the phase-space po
P15(x051, p050) and P25(x050, p051), respectively.
An analogous formula was given in@7# for continuous mod-
els like the one defined by Eq.~18!.

Formula~22! constitutes the bridge that makes it possib
to link the transmission properties of a finite disordered l
tice to the time evolution of the energyr 2 of the stochastic
0-5
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L. TESSIERI AND F. M. IZRAILEV PHYSICAL REVIEW E64 066120
oscillator~5!. Taking this formula as a starting point, one c
analytically study the transport properties of a finite rand
lattice in two distinct cases: the ballistic regime, when t
width of the barrier is much less that the localization leng
for the infinite lattice, and the localized regime, when t
vice versa is true. The two cases are, respectively, ident
by the conditionsL! l ` andl `!L, where we use the symbo
l `5l21 to denote the inverse of the Lyapunov expone
~16! and we are assuming that the lattice step is unitary
that we can refer toL both as the number of sites of th
disordered lattice and as the length of the barrier. We w
evaluate the transmission properties first in the ballistic
then in the localized regime.

Before proceeding to the discussion of the two cases,
observe that our use of the continuous model~5! makes the
results of this section valid for both continuous models l
Eq. ~18! and for the discrete lattice~1!. The same formulas
apply to both cases, with the localization lengthl ` taking the
forms ~15! or ~16!, depending on whether the formulas ref
to the continuous or the discrete model. We also note tha
results of this section were obtained long ago for continu
models~see, e.g.,@7# and references therein!; what is new
here is their application to the discrete case and the appr
used in their derivation, which sets the mathematical res
in a different physical perspective.

A. The ballistic regime

In the ballistic regime, i.e., whenL! l ` , one hasr 1,2(L)
.1 and expression~22! can be written in the form

TL511
22r 1

2~L !2r 2
2~L !

4
1•••. ~23!

Another quantity of physical interest is the resistance of
finite disordered lattice, which is here defined as the inve
of the transmission coefficient

RL5TL
215

21r 1
2~L !1r 2

2~L !

4
. ~24!

A glance at expressions~23! and ~24! reveals that, in or-
der to obtain theaveragevalue of these physical quantitie
one has to compute the average of the squared radiir 1

2(L)
and r 2

2(L) over different disorder realizations. To achie
this goal, one can rely on the method developed by V
Kampen to study random oscillators and other stocha
models~see@8# and @10#!. Van Kampen’s approach is base
on the construction of a dynamical equation for the aver
moments of the position and momentum of the random
cillator. For the second moments one has

d

dt S ^x2&

^p2&

^px&
D 5AS ^x2&

^p2&

^px&
D , ~25!

where the evolution matrix is
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A5S 0 0 2v

e11e2 2e11e2 22v

2v1e3 v 2e11e2

D ~26!

with

e15E
0

`

x~t!dt,

e25E
0

`

x~t!cos~2vt!dt,

e35E
0

`

x~t!sin~2vt!dt.

For the general case of colored noise, Eq.~25! is correct up
to orderO(e)5O(j2); for the special case of white noise
however, it turns out to beexact.

One can extract substantial information from Eq.~25!; in
particular, it is possible to obtain the behavior of the avera
squared radiir 1

2(t) and r 2
2(t) for t→0

^r 1
2~ t !&511~e11e2!t1o~ t2!,

^r 2
2~ t !&511~2e11e2!t1o~ t2!.

As a consequence one has

K r 1
2~ t !1r 2

2~ t !22

4 L 5
1

2
e2t1o~ t2!. ~27!

Notice that these equations are correct up to orderO(t2), so
that it is meaningful to retain the distinction between t
parametere1 ande2. Using the result~27! one arrives at the
following expressions for the average transmission coe
cient and resistance:

^TL&5122
L

l `
1OS S L

l `
D 2D

and

^RL&5112
L

l `
1oS S L

l `
D 2D .

These formulas show that in the ballistic regime the avera
of both the transmissivity and the resistance are linear fu
tions of the thicknessL of the disordered layer. In addition
the average resistance coincides with the inverse of the
erage transmissivity

^TL
21&.^TL&21.

B. The localized regime

In the localized regime the disordered lattice extends o
several localization lengths:L@ l ` . In this case, to evaluate
the average value of the transmission coefficient~22! it is
convenient to determine the probability distribution for t
0-6
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random variabler. We observe that forL@ l ` the radius in-
creases exponentially; moreover, one has

r 1~L !.r 2~L !.r ~L !, ~28!

with probability equal to one, regardless of the initial con
tion. As a consequence we can drop the subscripts 1 an
and write the transmission coefficient in the simplified fo

^TL&.K 2

11r 2~L !
L . ~29!

From the mathematical point of view, the problem of co
puting the average~29! can be better handled by introducin
the logarithmic variablez5 ln r. The dynamics of the random
oscillator ~5! is then determined by the equations

ż52
1

2
j~ t !sin 2u,

~30!
u̇5v1j~ t !sin2u.

System~30! belongs to the class of stochastic different
equations of the form

u̇i5Fi
(0)~u!1aFi

(1)~u,t !, ~31!

whereFi
(0)(u) represents a sure function ofu perturbed by a

stochastic functionaFi
(1)(u,t) with a!1. Indeed, one can

reduce the system~30! to the form~31! by defining the vec-
tors of Eq.~31! as

u5S z

u D , F(0)5S 0

v
D , F(1)5S 2

1

2a
j~ t !sin~2u!

1

a
j~ t !sin2u

D
with a5A^j2(t)&. It is known that a stochastic differentia
equation of the form~31! can be associated with a parti
differential equation whose solutionP(u,t) represents the
probability distribution for the random variableu @8#. This
partial differential equation can be written as

]P

]t
5(

i

]

]ui
H 2@Fi

(0)P~u,t !#

1a2(
j
E

0

`K Fi
(1)~u,t !

d~u2t!

d~u!

]

]uj
2t

F j
(1)~u2t,t2t!L

3
d~u!

d~u2t!
P~u,t !dtJ 1o~a2!, ~32!

where ut stands for the flow defined by the determinis
equation u̇5F(0)(u), d(u2t)/d(u) is the Jacobian of the
transformationu→u2t, and the symbolo(a2) represents the
omitted terms of order higher than the second in the per
bative parametera. Thus, in the case of weak stochastic
06612
-
2

-

l

r-

(a!1), one can describe the dynamical behavior of the s
tem ~31! with an approximate equation of the Fokker-Plan
kind.

In the present case, the approximate Fokker-Planck eq
tion ~32! associated with the dynamical system~30! takes the
form

]P

]t
~u,z,t !52v

]P

]u
1

1

4
sin~2u!

]

]u

3H @2e11e2 cos~2u!1e3 sin~2u!#
]P

]z J
1

1

2

]

]u H sin2~u!@e3 cos~2u!2e2 sin~2u!#
]P

]z

1sin2~u!
]

]u
$@e12e2 cos~2u!

2e3 sin~2u!#P%J
1

1

4
sin~2u!@e2 sin~2u!2e3 cos~2u!#

]2P

]z2
.

~33!

We remark that this equation is correct to the second orde
j(t) in the general case of colored noise; in the special c
when the noisej(t) is white, however, it can be shown tha
Eq. ~33! becomesexact.

Once we dispose of the Fokker-Planck equation~33! for
the general distributionP(z,u,t), we can consider that, in
order to evaluate the average of the transmission coeffic
~22!, we actually need only the probability distribution fo
the radial variabler ~or for the equivalent logarithmic vari
ablez). Therefore, we do not have to solve Eq.~33! in all its
generality and we can instead consider the restricted Fok
Planck equation

]

]tE0

2p

P~u,z,t !du

5
1

8E0

2p

$@12cos~4u!#e22sin~4u!e3%
]2P

]z2
du

1
1

4E0

2p

$2e1 cos~2u!

2e2@11cos~4u!#2e3 sin~4u!%
]P

]z
du

obtained by integrating Eq.~33! over the redundant angula
variable. To proceed further we assume that, after a sh
lived transient, the probability distribution takes the form

P~u,z,t !.
1

2p
P~z,t !. ~34!
0-7
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This assumption can be justified on the grounds that,
weak noise, the dynamics of the angular variable is appr
mately ruled by the equationu̇.v. This implies that, after a
sufficiently long time~of the order of some periods 2p/v),
the angular variable will have swept the whole interv
@0:2p# in an almost uniform way. That makes it reasona
to suppose that, for timest@2p/v, the angular distribution
is flat ~excluding of course the exceptional case whenv
.0, i.e., when the energy value lies in a neighborhood of
band edge!.

As a consequence of the hypothesis~34!, one eventually
gets the reduced Fokker-Planck equation for thez variable

]P

]z
~z,t !5lF2

]P

]t
~z,t !1

]2P

]z2
~z,t !G , ~35!

wherel is the Lyapunov exponent~16!. Equation~35! has
the form of a heat equation with a constant drift; its soluti
is therefore

P~z,t !5
1

A2plt
expF2

~z2lt !2

2lt G . ~36!

This solution satisfies the initial conditionP(z,t50)5d(z),
i.e., we have assumed that at timet50 one hasr 51, as is
the case for the initial conditionsP1 and P2. The initial
condition, however, is somewhat arbitrary, since Eq.~35! is
correct only for timest@2p/v.

Knowledge of the distribution~36! makes it possible to
compute the average transmission coefficient in the local
regime. Using probability~36! we can actually evaluate ex
pression~29! and thus obtain

^TL&5E
2`

1` 2

11exp~2z!
P~z,L !dz.Ap l `

2L
expS 2

L

2l `
D .

~37!

As a result, in the limitL→` one has

2
1

L
ln^TL&5

l

2
. ~38!

Formulas~37! and~38! show that in the localized regim
the transmission coefficient decreases exponentially with
width of the disordered lattice and they provide the corr
rate of exponential decay. It must be pointed out, howe
that expression~37! fails to reproduce the exact preexpone
tial factor, which actually scales as (l ` /L)3/2 ~for
approximation-free results see@7# and references therein!.
This partial shortcoming must be attributed to the two a
proximations made in the derivation of formula~37!, i.e., ~i!
assumption~28! that allows the substitution of the exact e
pression~22! for the transmission coefficient with the sim
plified form ~29! and ~ii ! hypothesis~34! about the angular
dependency of the probability distributionP(u,z,t). Both
assumptions are admittedly incorrect for very short tim
i.e., for distancesL which are small on the length scale d
fined by l ` . Thus we are led to the conclusion that in fo
06612
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mula ~37! the exponential factor is determined by the lon
time behavior of the random oscillator~which is correctly
described in our approach!, while the preexponential factor i
strongly influenced by the short-time dynamics of the os
lator. It is interesting to notice that an incorrect preexpon
tial factor proportional to (l ` /L)1/2 was also obtained in@7#
studying a continuous solid-state model with a different a
proach. In that study, however, the physical meaning of
adopted simplifying hypotheses was not so transparent a
the present case, where the analogy between models~1! and
~5! makes it possible to gain an intuitive comprehension
the mathematical approximations.

Beside allowing one to compute the average of the tra
mission coefficient, the probability distribution~36! makes it
possible to determine the average value of other phys
quantities which are relevant for a thorough description
the transport properties of a disordered lattice. The logarit
of the transmission coefficient and the resistance~24! are
standard choices for the complete analysis of the cond
tance problem.

The interest for the logarithm of the transmission coe
cient stems from the fact that, unlike the transmission co
ficient itself, the logarithm lnTL is a self-averagingvariable
and therefore a physically more sound parameter for the d
nition of the transport features of the disordered finite latt
~see, e.g.,@7#!. In the present framework, the average of t
logarithmic transmissivity can be computed as follows. Fir
we observe again that in the localized regime condition~28!
is fulfilled for almost every realization of the disorder so th
we can write

^ ln TL&.K ln
2

11r 2~L !
L .

This expression can be put in the equivalent form

^ ln TL&52^ ln~r 2!&1 ln~2!2K lnS 11
1

r 2D L . ~39!

We now observe that for everyx.0 the logarithm satisfies
the relations 0, ln(11x),x; hence the last term on the righ
hand side~rhs! of the preceding equation must obey

0,K lnS 11
1

r 2D L ,K 1

r 2L 51, ~40!

where we have made use of distribution~36! to evaluate the
average of 1/r 2. Relations~39! and ~40! imply that in the
limit L→` one has

2
1

L
^ ln TL&5

2

L
^ ln r ~L !&.

Substituting in the rhs of this equation the average value
the variablez5 ln r one finally obtains

^ ln TL&522
L

l `
0-8
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which shows that the average logarithm of the transmiss
coefficient decreases linearly with the lattice width in t
localized regime.

A third quantity that represents a meaningful statisti
characteristic of the disordered lattice is given by the inve
of the transmission coefficient, i.e., by the resistance~24!. As
we did in the previous cases, we rely on the condition~28! to
write the resistance in the form

RL.
1

2
@11r 2~L !#. ~41!

Starting from this expression and making use of distribut
~36! we obtain

^RL&;expS 4L

l `
D . ~42!

This expression shows that the average value of the re
tance increases exponentially so that the resistance h
multiplicative rather that additive behavior as a function
the length of the disordered lattice. This conclusion ob
ously ceases to be valid in the special case in which lo
range correlations of the random potential make the local
tion length l ` diverge: in this case the disordered latti
becomes transparent. We underline that, using the re
given in Ref.@1# for the Anderson model—or the prescrip
tions of Sec. IV for the continuous model~18!—it is possible
to define a random potential such that the correspond
Lyapunov exponent is zero in certain frequency intervals
positive elsewhere. As a consequence, the disordered la
generated by such a potential will be transparent for e
trons with the appropriate energies and opaque otherw
This opens the possibility of projecting efficient electron
filters and agrees with the recent experimental findings
cussed in@2#.

As a further consideration, we observe that Eqs.~37! and
~42! show that in the localized regime the inverse of t
average transmission coefficient doesnot coincide with the
average of the resistance

^TL
21&Þ^TL&21

in contrast to the ballistic regime case.
At this point we wish to remark that the interest of e

pression~42! goes beyond the definition of the transpo
properties of a finite disordered lattice. This is so because
resistanceRL is strictly related to the energyr 2 of the ran-
dom oscillator~5!, as clearly shown by Eq.~41!. The expo-
nential increase of the average resistance can therefor
reinterpretated as energetic instability of the random osc
tor ~5! on long time scales and formula~42! can be rewritten
in the alternative form

^r 2~ t !&}exp~gEt ! for t@1,

with

gE54l, ~43!
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wherel is the Lyapunov exponent~15!. This result shows
that the energy of the random oscillator grows exponentia
at large times~unless one hasl50) and that the rategE of
this exponential increase is equal tofour times the Lyapunov
exponent. We could have computed the energy growth
also with a different approach, taking Van Kampen’s equ
tion ~25! as a starting point. In fact, Eq.~25! determines the
time evolution of the second moments of the position a
momentum of the random oscillator; it is therefore possi
to obtain the result~43! by determining the eigenvalue of th
evolution matrix~26! with the largest real part.

We would like to note that, in some papers devoted
stochastic classical systems, the rate of orbit diverge
~Lyapunov exponent! is assumed to be a factortwo less than
the energy growth. The confusion probably stems from~and
is equivalent to! the incorrect assumption that for large tim
the average of the logarithm of the energy and the logarit
of the average energy coincide, whereas the real relation

1

t
^ ln r 2~ t !&5

1

2t
ln^r 2~ t !&,

valid in the limit t→`.
As a last remark, we point out another consequence of

correspondence between the resistance of a disordered la
and the energy of the stochastic oscillator~5!. It is well
known that in the localized regime the resistanceRL is a
non-self-averagedquantity, since the relative fluctuations o
this quantity do not disappear in the macroscopic limit.
deed, if we employ the average value~42! of the resistance
and use the distribution~36! to compute the average of th
square of the resistance~41!, we obtain that the root-mean
square deviation of the resistance behaves like

dRL5~^RL
2&^RL&2221!1/2}exp~2L/ l `!, ~44!

i.e., it grows exponentially with the length of the rando
lattice. This result is well known to solid-state physicists, b
it may be of some interest to reformulate it in terms of t
dynamics of the stochastic oscillator~5!. Then we can ex-
press the meaning of the result~44! by saying that the energy
of the stochastic oscillator~5! is a quantity whose asymptoti
value can fluctuate wildly from one noise realization to a
other. Relative fluctuations do not vanish at long times; t
means that the concept of non-self-averaging quantity
find useful applications also in the field of stochastic clas
cal systems.

VI. CONCLUSIONS

The first part of this paper is devoted to a thorough d
cussion of the analogies existing between the Ander
model~1! with diagonal correlated disorder and the stoch
tic oscillator~5! with frequency perturbed by a colored nois
with correlation function~7!. Our analysis shows that th
two systems are equivalent in the sense that there exis
close correspondence between electronic states on one
and space trajectories on the other. Quantitatively, this co
spondence manifests itself in the identity of the inverse
calization length for electronic states with the exponen
0-9
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rate of divergence of nearby oscillator trajectories. It is
markable that this correspondence holds in spite of the
that the Anderson model is quantum and discrete~in space!
whereas the random oscillator is classical and continuous~in
time!. The analogy between the models~1! and~5! has been
already investigated in@5# for the basic case of uncorrelate
noise and disorder; however, the present work extends
previous conclusions to the case ofcorrelated disorder.

In the second part of the work we discuss some impli
tions of the parallelism between the models~1! and ~5!. In
the first place, we translate the concept of ‘‘mobility edg
from the field of solid state physics to that of stochastic s
tems, showing how time correlations of the frequency no
may produce energetic stability for the random oscillator~5!.
We demonstrate that the knowledge of the oscillator dyna
ics on a finite time scale can be useful to gain insight ab
the transport properties of finite disordered lattices. This
lows us to derive important results on electronic transmiss
in a simple and physically transparent way. Using the an
ogy the other way round, we can also deduce statistical p
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erties of the energy of the stochastic oscillator from t
knowledge of statistical features of the resistance of dis
dered wires. In passing we also clarify the relation betwe
energetic and orbit instabilities for the random oscillator~5!.

In conclusion, we believe that the bridge built among t
fields of solid-state disordered systems and classical stoc
tic models represents a useful way to study the propertie
both classes of systems. The present paper can be consi
as an illustration of how this dual approach works, allowi
one to solve old problems by putting them in a new persp
tive.
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