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One-dimensional quantum models with correlated disorder versus classical oscillators
with colored noise
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We perform an analytical study of the correspondence between a classical oscillator with frequency per-
turbed by a colored noise and the one-dimensional Anderson-type model with weak correlated diagonal dis-
order. It is rigorously shown that localization of electronic states in the quantum model corresponds to expo-
nential divergence of nearby trajectories of the classical random oscillator. We discuss the relation between the
localization length for the quantum model and the rate of energy growth for the stochastic oscillator. Finally,
we examine the problem of electron transmission through a finite disordered lattice by considering the evolu-
tion of the classical oscillator.
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[. INTRODUCTION This paper is organized as follows. In the following sec-
tion we define the models that constitute the object of our
This work serves the goal of establishing some quantitastudy, and we make some general considerations on their
tive links between two seemingly unrelated fields: quantunnalogies. In Sec. Il we rigorously analyze the relation be-
disordered models on the one hand and classical stochastiween the localization of electronic states for the Anderson
systems on the other. More precise]y, we ana]yze the re|dn0de| and the orbit |nStab|l|ty of a random oscillator. In Sec.
tions existing between a classical oscillator with frequencylV We discuss how correlations of the frequency noise can
perturbed by a feeble noise and the one-dimensi6ha) suppress the energy growth of _the stochasth oscillator. Th_e
Anderson-type model with a weak diagonal disorder. Ou@nalogy betwgen a random oscillator and a d.|sordered. chaln
main interest is incorrelatedrandom potentials and, corre- is then use.d. n S_ec. Vto study the electronic transm_lssmn
spondingly, incolorednoise for the stochastic oscillator. through a finite disordered lattice. In Sec. V we also discuss

Recently, the role of correlations in random potentials ofthe relation between er_werget|c_|nstab|l|ty and_ orbit diver-
ence for a random oscillator. Finally, Sec. VI is devoted to

qualjtum models has been the ot_)!ect of intense scrutmy. I ummarizing the conclusions.
particular, it was shown that specific long-range correlations
in potentials may lead to the emergence of a continuum of
extended states even in 1D lattidese, e.g.[1] and[2] and Il. DEFINITION OF THE MODELS
references therejnin this paper we show that the phenom-  the Anderson model is defined by the discrete stationary
enon of Anderson localization has its counterpart in the enschralinger equation
ergetic instability of a random oscillator. Specifically, the
mobility edge generated in the 1D quantum models by long- + + _

_qte =E 1
range correlations is equivalent to the suppression of the en- Yne1t ¥n-1tentn=Edn @)

ergy.grovvth of the stochastlc. oscillator due to temporal COr hnere J is the amplitude of the wave function at theh
relations of the frequency noise.

. . site of the lattice and disorder is introduced via the site en-
We use the correspondence between stochastic OSC'”atoé?gieSsn which in the following are assumed to bandom
- - . i . Torrelatedvariables. We do not restrict our considerations to
mission properties of finite lattices by making use of thea specific distribution for the random potential; we only

dynamical analysis of an oscillator with noisy frequency. . _ .
This approach allows us to put in a new perspective thesuppose that it has zero averdlgg) =0 and that the binary

roblem of electronic transport in disordered lattices and aIsCoerIatOK‘g”‘9n+|<> 's @ known function of the indek. We
Probie o P . : Iso assume that the correlater,e,, ) does not depend on
to gain new insight on the dynamics of random oscillators.

We observe that the analogy between stochastic oscilla. and thatit is a decreasing functionlofin other words, we

tors andcontinuousdisordered models of the Anderson kind make the physically sensible assumptions that the random

has been investigated befofgee, e.9.[3]). The novelty of SL.‘CC?SS'On{‘.S“} s stationary, and that comelations decay
; = . with increasing distance. We restrict our analysis to the case
the present work resides mainly in the following two fea-

tures. In the first place, we analyze the correspondence bg—f weak disorder, defined by the condition

tween a stochastic oscillator anddescretelattice, which is )

not so straightforward as the analogy of the former system (eny<L1.

with a continuous Anderson model. The second relevant as-

pect of this work is that we focus our attention on the physi-In the preceding expressions the sympol- ) stands for the
cally new effects of long-range correlations. average over a single disorder realization defined by the limit
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1 N does not prove at all the equivalence of moddlsand (5)
Xy = lim = > Xa: but only constitutes a hint that such a link may exist.

N—oo!Y N=1 In our analysis of stochastic oscillators, we will focus on
the Hamiltonians represented by E@), completing the
V§&finition of the model by further assuming that the noise
&(t) has zero average and that its binary correlator is a

we assume that this average is equivalent to the average o
disorder realizationgensemble averagdor the succession

{ent} k functi
It is known that the mode(1) can be put into correspon- nown function
dence with the kicked oscillator defined by the Hamiltonian (£(1))=0 and (&(t)&(t+ 7)) =x(7). (6)
2 2 2/ = . ]
H= o X?+ % +o > Ané(t—nT)), (27 MEd.(6) the symbok(---) is used for the time average
n=—x

1 (T

which represents an oscillator whose momentum undergoes <f(t)>:T|'m T2 f(t)dt,
0—®

instantaneous variations of random intensity at regular

Egi;gt%rgg‘s‘ d?:;lejs‘;(génEz?(%;ezetgvee[z];h%g?cﬁ)sa&i which is assumed to coincide with the ensemble average for
» €.9.17). Y the procesg(t). Notice that we do not restrict our consider-

correspondence consists in the fact that, by integrating the,. h f whi ise b : di d
Hamilton equations of motion of the oscillat(®) over the ation to the case of white noise, but we are instead intereste
: . . in the general case ablorednoise. Finally, we require that

period between two successive kicks one gets the map ; o
the noiseé(t) be weak; in other words, we assume that the

Xi41= X, COL @T) + (Pry— ApXp)SiN@T), fluctuations of the frequency around its average value are
small.
Pns1=—Xn SIN(@T)+ (pPr— ApX,)cog ©T), & Below we show that oscillators of the kin@), with the

above-mentioned noise features, are equivalent to the Ander-
wherex, andp, stand for the position and momentum of the son model(1) if two further conditions are met. First, the
oscillator immediately before thath kick. This map is correlation function has to be of the form
equivalent to to the Schdinger equatior(1) which defines
the Anderson model. Indeed, by eliminating the momentum (AY %
from Egs.(3), one gets the relation x(1)=—5 kE {(k)o(7—kT), 7

X1 Xn-1F A SINWT) Xy =2X, COS @ T) where the symboag(k) stands for the normalized binary cor-
which coincides with the Schdinger equatior(1) provided  relators
that the positiorx,, of the oscillator at timg=nT is identi-
fied with the electron amplitudé,, at thenth site and that
the parameters of the kicked oscillator are related to those of
the Anderson model by the identities

<An+kAn>
(AD

of the random variable#,, specified by the second condi-
tion. Our second requirement is that the unperturbed fre-
&uencyw of the oscillator and the parametefig must be
related to the parameteEs and e,, of the Anderson model

{(k)= ®

en=A,siNwT) and E=2 cogwT), (4)

The formal correspondence between the quantum mod
(1) and the kicked oscillator(2) raises the question of . "
whether a similar analogy can link the Anderson model to a{hroug.h the 'de”““.e“)- : .
random oscillator whose frequency is perturbed by a con- Notice that the links establlsh_ed by these two cond_|t|ons
tinuous noise rather than by a succession of discontinuou@SSociate key features of the noé{g) to the corresponding
and singular kicks as in modé). In other words, one is led Properties of the random potentig} . Indeed, once the ran-

to infer the existence of close ties between the quanturffOm variabless, andA, are connected by the relatidn),
model (1) and a stochastic oscillator defined by the Hamil-the correlator48) become identical to the normalized corr-

tonian elators of the potentiat, . Therefore the spatial correlations
of the disorder in the Anderson model are mirrored by tem-
2 p% x? poral correlations for the noisg(t). In the special case in
H=w| 5+ 5|+ 5 &), (5)  which the disorder in the Anderson modeltiscorrelated

(i.e.,{en+ren) =0 for k#0), the noise for the random oscil-
where£(t) is a continuous and stationary noise. Notice thatlator is white [i.e., (£(t)&(t+ 7))=(7)]. One can also ob-
these requirements aj(t) set the random oscillatgs) and ~ serve that the case of weak disorder in the Anderson model
the kicked oscillatof2) in two different categories within the corresponds to that of weak noise for the random oscillator,
vast family of stochastic oscillators, since the succession o$ince the conditior(e)<1 entails the consequence that
kicks in the model(2) is a nonstationary and strongly dis- (A%)<1 (except that at the band edge, i.e., fof —0,
continuous random process. Consequently, the connectiomhich is a special case where anomalies are expected to arise
between the Anderson modd) and the kicked oscillatdi2) and will not be considered here
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Obviously, we must endow with a well-defined meaning 1 (To
the notion of “equivalence” used above to describe the con- A== lim o] &(t)sin26(t)]dt
nection between the Anderson modé&) and the random To—=©1070
oscillator defined by Egs(5) and (7). We speak of the 1
equivalence of the two models in the sense that the time =— E(g(t)sir'[za(t)]>. (12

evolution of the orbits of the random oscillator closely mir-
rors the spatial variation of the electronic states on the lattice.
More precisely, the exponential divergence rate of nearb3(h
orbits turns out to be equal to the inverse localization Iengtqh
of the Anderson model.

The correspondence between the random oscillépr
and the Anderson moddll) is to some extent surprising
since the former is &lassicalsystem and isontinuousin
time whereas the latter model guantumand discretein y(r)=(&(t)exd 2i 0(t+ 7)]).
space. It is therefore particularly interesting to notice how
close the two systems turn out to be. To sum up, one of thgtarting from this definition, in the limie—0 one has
main results of this paper is that the Anderson model with
weak correlated disorder has a close analog in a random (74 ¢)=(&(t)exi26(t+ r)][1+2i 6(t+ 7) €]} + o(€).
oscillator with frequency perturbed bycalored noise. This
equivalence generalizes the result established in Fdf. With use of the dynamical equatiofi0) one can further
where the Anderson model with uncorrelated disorder wasvrite
linked to a random oscillator of the kintb) with white
noise. YT+ €)= y(7)(1+2iwe)+2ie(§(1) &(t+7)

X exp 2i 6(t+ 7)]sirPO(t+ 7))+ o( €).

The problem of computing the Lyapunov exponédjtis

us reduced to that of calculating the noise-angle correlator
at appears in Eq12). This can be done in the following
way, which is the extension to the continuum case of the
procedure adopted ifl] for the discrete case. First, one in-
troduces the noise-angle correlator defined by the relation

Ill. THE LYAPUNOV EXPONENT

In the previous section we have described the analog the limit of_ weak _noise, one can factorize thg correlatqr
between the Anderson modél) and the random oscillator hat appears in the right-hand side of the prfecedmg.equatlon
(5) as being based on the correspondence between the eIéE]d _takt_a the average over the angular varlable_usmg a flat
tronic wave function of the former model and the space ordistribution for ¢. Indeed, wherg(t)—0, Eq.(10) implies
bits of the latter system. To prove this analogy, we will com-that /= so that, after a conveniently long time, one can
pute the divergence rate of nearby trajectories of the randor@xpect the angular variable to take values uniformly distrib-
oscillator, i.e., its Lyapunov exponent and we will show that,uted in the interva] 0,27 ]. As a consequence the noise-angle
when the conditiong4) and (7) are met, the Lyapunov ex- correlator must obey the relation
ponent coincides with the inverse localisation length in the

Anderson model) =1_*. We define the Lyapunov exponent ; i
N e +e)= + —= +
through the formula Y7t e=y(n(l+2iwe) 2)((7)'E ofe), (13

)\=Tlim ;imo-r_o 5o In x(t) t. ©) relaton defined by Eq(6). On the other hand, a simple ap-
0—®o—

plication of calculus rules leads to
To compute this expression it is convenient to introduce

1 1fTo X(t+ ) where x(7) is the correlation functiorfor noise-noise cor-

the pqlar coordinates dgfined through the standar.d relations YT+ €)= y(1)+ ﬂ(7)6+0(6)_ (14)
X=r sin@, p=r cosé. This allows one to cast Eq9) in the dr
form
Comparing Egs(13) and (14), one obtains the differential
1 (Tor equation
A= Iim =—| -=dt
To*;ocTO ol d;y

) i
4 (N=2lwy(n = 5x(7),
To proceed further, we consider the dynamical equations for
the random oscillator in polar coordinates

whose solutiorfwith the boundary condition lim __ y(7)
6= w+ £(t)sir? 6, (10) =0] gives the noise-angle correlator

i [ )
rz—%rg(t)sinze. (11) Y(T)Z—EJ mX(S)ez'“’(T_S)dS-

Using the radial Eq(11), the expression for the Lyapunov Using this result the Lyapunov expondid2) can be finally
exponent can be finally put into the form written as
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1 [+ apart from the exceptional case of the band center, the dy-
A= gf (é(1)é(t+7))cod2w)dT, (19  namical features of the modeflt) and(5) do not differ to the
o second order of perturbation theory.

which implies that the Lyapunov exponent for the stochastic 1he equivalence of the mode($) and (5) can be exam-

oscillator (5) is proportional to the Fourier transfory(2e) ined also from a different point of view: that of the corre-

of the correlati(F))n f?mction at twice the frequency of tﬁe un_spondence between discrete and continuous solid state sys-
. q y tems. Indeed, the dynamical equation for the oscill@pr

perturbed oscillator.

We are interested in the particular case in which the cor-
relation function of the noisé(t) takes the specific forrv),
because we want to prove that in that case the Lyapunoypincides mutatis mutandiswith the stationary Schicinger
exponent(15) coincides with the inverse localization length gquation
of the Anderson mode(l). The substitution of the correla-

X+ w&(t)Xx=— w?x (17)

tion function(7) in the general expressidib5) gives — " +v(X)p=k?y, (18
(Aﬁ) = which describes the motion of a quantum particle of energy
N="g7 1+2k21 {(k)cog2wTk) |. E=k? in a random potentiad (x) = —k&(x). Actually, ex-

pression(15) for the inverse localization length has long
Taking also into account the relatiof® between the param- been known to solid state physicigtsee, e.g., Ref.7]) as
eters of the systemél) and (5), one can finally write the the high-energy limit of the Lyapunov exponent for the con-

Lyapunov exponent for the random oscillator in the form tinuous mode[18); the same formula was later recovered in
[3] using the correspondence of E¢s7) and(18) to deduce

1 (g2 the Lyapunov exponeriil5) from the analysis of the dynam-
= $m€0(w1’), ics of the oscillator(17). In the present paper, rather than
@ insisting further on the analogy between mod€él3) and
4o (18), we prefer to draw a different conclusion, namely that
_ the deduction of the inverse localization lendf®) for the
T)=1+2 k 2wTKk). 16
e(eT) kzl flgcos20Th) (16) discrete Anderson model from expressid®) may be inter-

preted as the proof that the continuous madé) can be put

This expression coincides with the one giveihfor the  into one-to-one correspondence with the discrete lattige
localization length in the Anderson model with correlatedif, and only ifthe correlation function of the random potential
disorder. The inverse localization length is given by the prodhas the specific forni7). [Obviously, the transposition of
uct of two factors, namely the Lyapunov exponent for theresults from one model to the other requires a proper change
uncorrelated disorder case and the functigfwT), which  of the corresponding parameters with relations g as a
describes the effect of disorder correlatidiasid which re-  consequence of this swap, the mathematical correspondence
duces to unity when correlations are abgeRbrmula(16)  of the two models does not imply an exact physical equiva-
thus confirms the equivalence of the quantum Andersofence. Models1) and (18), for instance, have different un-
model (1) with the classical oscillato(5) which had been perturbed energy spectra, defined by the respective disper-
inferred in Sec. Il by the existence of a third system—thesjon relationsE =2cosk and E=k?.]
kicked oscillator (2—which was somehow contiguous to

both modelg1) and(5). To sum up, formuld16) allows one IV. “MOBILITY EDGE” FOR A STOCHASTIC

to conclude that the Anderson model with twrelateddis- OSCILLATOR
order has a classical counterpart represented by a stochastic
oscillator with the frequency perturbed bycalored noise. In Ref.[1] the authors used formuld6) to investigate the

This conclusion generalizes the equivalence established iproblem of the mobility edge for the Anderson mod#).
[5] between the Anderson model witincorrelateddisorder ~ They showed that long-range correlations in the disorder can
and an oscillator with the frequency perturbed byvhite  generate a continuum of extended electronic states and they
noise. found a way to construct sequencgs,} of site energies

A remark is in order here: expressi¢h6) for the inverse  giving rise to a Lyapunov exponent with a predefined depen-
localization length of mode(l) is correct for all energy val- dence on the energy. In particular, using this recipe they were
ues inside the unperturbed baexiceptthat at the band cen- able to construct site potentials that generate a mobility edge
ter i.e., for o T=m/2 where an anomaly arises and specialeven for the 1D latticé1).
methods are required for the analytical investigatisee, Here, we show how it is possible to solve the analogous
e.g.,[6]). This anomaly is a resonance effect inherent in theproblem for the random oscillatdb) taking formula(15) as
discrete nature of the modél) and cannot therefore be re- a starting point. More precisely, we will show how to define
produced by the continuous systéf). Other anomalies ap- a continuous noiseé(t) such that the corresponding
pear in the Anderson model for the “rational” values of the Lyapunov exponeni (w) has a predefinite dependence on
energy(i.e., whenwT=7p/2q with p and g integer num- the frequencyw. Since the Lyapunov exponent determines
bers, but they are effects of an order higher than the seconthe asymptotic behavior of the oscillator enefgye discuss
[5] and need therefore not be considered here. In conclusiothis point more in detail in the next sectiprshaping the
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mine the energetic behavior of the oscillator. In particular, if NMow)= (21
the noiseé(t) has the appropriate time correlations, the cor-
responding Lyapunov exponent can sharply drop from posi

tive values to zero when the unperturbed frequeney

Crosses a threshold value. In p_hyswz_il terms that means thﬁh energetically stable condition to an unstable one. Follow-
the energetic growth of 'gh_e oscillator is suppressed when thf;]g the described procedure it is easy to see that the
frequency reaches a critical value. The existence of a frel-_

guency threshold determining whether the oscillator is ener_yapunov exponent2l) is generated by a noise of the form
getically stable or not is the physical counterpart of a mobil- /8 +sin(s)

ity edge, which divides extended states from localized ones ()= —f —— p(s+t)ds,

in the Anderson model. Thus, in spite of the current wisdom mJow S

that frequency noise produces energetic instabifge, e.g., ) ) , o

[8] and references thergjrit turns out that time correlations With 7(t) being any random process with the statistical prop-
of the noise may lead to a suppression of the energy growt/erties(20. _
This conclusion follows directly from the known formula At this point, it is opportune to stress that the mathemati-

(15), but, to the best of our knowledge, this implication hasc@l identity of Eqs(17) and(18) implies that all features of
not been discussed before in the literature. the random oscillatof5) are shared by the solid state model

A remark is in order here. Our analysis is based on 418). Therefore the mathematical results of this section not

perturbative approach justified by the weak disorder assumg@nly imply that noise correlations can make the random os-
tion and our results for the Lyapunov exponent are correct t&ilator (5) stable, they also represent a recipe to construct a
the second order of the expansion in the disorder strengtiandom potential generating a mobility edge for the model
One should therefore keep in mind that our use of terms suchtd)-
as “mobility edge” or “suppression of the energy growth” is
fully justified only within the limits of the second-order ap- V. TRANSMISSION THROUGH A FINITE DISORDERED
proximation. LATTICE

To construct a nois€(t) that gives rise to a defined
Lyapunov exponenk(w), the starting point is the correla-
tion function x(7) that can be easily obtained by inverting
formula (15)

function A (w) through noise control enables one to deter- [1 if |w|<1/2

0 otherwise,

whose frequency dependence implies that the random oscil-
lator undergoes a sharp transition farl = 1/2, passing from

We are now in the position to see how the analogy be-
tween the quantum modél) and the random oscillatdb)
can be used not only to compute the localization length in the
Anderson model but also to deal with problems both more
challenging and of greater physical interest, such as the study
8 (= _ L ' ST )
x(7)= —J’ Mw)e?“ do. of the transmission properties of a finite disordered lattice. In
)~ this section we show how the random oscillator formalism
allows us to tackle this problem and how it is possible to
Once the correlation functiog(7) is known, we can obtain obtain expressions for the transmission coefficient as a func-
a stochastic proces§(t) satisfying the conditiong6) by  tion both of the sample length and of the inverse localization
means of the convolution product length (15).
More specifically, let us consider the case of a 1D disor-
+oo dered lattice ot sites sandwiched between two semi-infinite
&t)=(p* ﬂ)(t)Zf B(s)n(s+t)ds, (19 perfect leads. Mathematically the problem is defined by the
o Schralinger equatiorfl), where the site energies, are now
. . . equal to zero fon<1 andn>L, while for 1I=sn=<L they are
there the function3(t) is related to the Fourier transform assumed to be correlated random variables[dhit was
x(w) of the noise correlation function through the formula shown that the transmission coefficiefiy through the
L-sites segment can be expressed in terms of the classical

+oo o - do map (3) as
po= | Viwes” Pe
4
. : o= (22)
and n(t) is any stochastic process such that 2+r3(L)+r5(L)
(n(t))=0 and (n(t)p(t"))=05(t—t’). (200 wherer,(L) andr,(L) represent the radii at theth step of

the map trajectories starting from the phase-space points
Formula(19) defines the family of noises corresponding to aP,=(X,=1, po=0) andP,=(xo=0, pp=1), respectively.
specific formA(w) of the frequency-dependent Lyapunov An analogous formula was given jid] for continuous mod-
exponent and constitutes the solution to the “inverse probels like the one defined by E(18).
lem” [i.e., determination of a noisé(t) that generates a Formula(22) constitutes the bridge that makes it possible
predefined Lyapunov exponént to link the transmission properties of a finite disordered lat-
As an example, we can consider the Lyapunov exponentice to the time evolution of the energy of the stochastic
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oscillator(5). Taking this formula as a starting point, one can 0 0 20
analytically study the transport properties of a finite random
lattice in two distinct cases: the ballistic regime, when the
width of the barrier is much less that the localization length —w+e;g D) —€1+ e
for the infinite lattice, and the localized regime, when the
vice versa is true. The two cases are, respectively, identifiedith
by the conditiond. <1, andl., <L, where we use the symbol -
l.=\"1 to denote the inverse of the Lyapunov exponent El:J’ x(7)dr,
(16) and we are assuming that the lattice step is unitary, so 0
that we can refer td. both as the number of sites of the
disordered lattice and as the Iength qf th'e barrier. We will €= fw)((T)COE(ZwT)dT,
evaluate the transmission properties first in the ballistic and
then in the localized regime.
Before proceeding to the discussion of the two cases, we o )
observe that our use of the continuous ma@limakes the €= fo x(7)sin(2w7)dr.
results of this section valid for both continuous models like
Eq. (18) and for the discrete latticél). The same formulas For the general case of colored noise, B§) is correct up
apply to both cases, with the localization lengthtaking the  to orderO(e)=0(£?); for the special case of white noise,
forms (15) or (16), depending on whether the formulas refer however, it turns out to bexact
to the continuous or the discrete model. We also note that the One can extract substantial information from E2p); in
results of this section were obtained long ago for continuougarticular, it is possible to obtain the behavior of the average
models(see, e.g.[7] and references therginwhat is new  squared radir3(t) andr(t) for t—0
here is their application to the discrete case and the approach
used in their derivation, which sets the mathematical results (rf(t))z 1+ (e;+ ex)t+0(t?),
in a different physical perspective.

A= 61+ €s _61+ €s —2w (26)

(r3())=1+(— e, + ex)t+0(t?).

A. The ballistic regime As a consequence one has

In the ballistic regime, i.e., wheb<l.,, one hag 5(L)

. . . 2 2
=1 and expressiof22) can be written in the form rit+ryt)—2\ 1 )
, ) 4 —262t+0(t ) (27)
Togq 227 23
L= 4 U (23 Notice that these equations are correct up to ofigr), so

that it is meaningful to retain the distinction between the

Another quantity of physical interest is the resistance of thd?@/ameteie; ande,. Using the result27) one arrives at the
finite disordered lattice, which is here defined as the invers&llowing expressions for the average transmission coeffi-

of the transmission coefficient cient and resistance:
L 2
E) )
2
der to obtain theaveragevalue of these physical quant_i_ties, <RL>:1+2£+0 L) )
one has to compute the average of the squared ragii) I, I,

and r2(L) over different disorder realizations. To achieve . - .
o(L) ov ' 'S 'zatl eV These formulas show that in the ballistic regime the averages

this goal, one can rely on the method developed by Van f both the transmissivity and the resistance are linear func-

ﬁlirggli?ség[g]tu;gd Eig]c;o\r?a:icélﬁézrs, sags pr%tggr] ;t%(;zaés;'ﬁons of the thickness of the disordered layer. In addition,
on the construction of a dynamical equation for the averagéhe average resistance coincides with the inverse of the av-
érage transmissivity

moments of the position and momentum of the random os-

2+rf(L)+r3(L) (T >=1—2£+o
=+. (24) L [

and

R=T.1

A glance at expression®3) and(24) reveals that, in or-

cillator. For the second moments one has -1 -
(TCH)=(Ty) g
2 2
<X2> <X2> B. The localized regime
dt (P | =A| (P7) |, (25 In the localized regime the disordered lattice extends over
(px) (PX) several localization lengthé:>1.,. In this case, to evaluate
the average value of the transmission coefficig28) it is

where the evolution matrix is convenient to determine the probability distribution for the
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random variable. We observe that fok.>1., the radius in- (a<1), one can describe the dynamical behavior of the sys-

creases exponentially; moreover, one has tem (31) with an approximate equation of the Fokker-Planck
kind.
ra(L)=ra(L)=r(L), (28 In the present case, the approximate Fokker-Planck equa-

tion (32) associated with the dynamical syst takes the
with probability equal to one, regardless of the initial condi- (32 4 ysteso)

tion. As a consequence we can drop the subscripts 1 and 2
and write the transmission coefficient in the simplified form

0,z,t)= (9P+l_ 20 J
E( Z,t)= w= Zsm( )%

2
T)={ —). (29)
(T <1+r2(|_)> , P
Xi[—€1+€,c0920)+ €3 S|n(20)]5
From the mathematical point of view, the problem of com-
puting the averag&9) can be better handled by introducing 190 2 ) JP
the logarithmic variable=Inr. The dynamics of the random t5551° (0)[e3c0826) € 5'”(29)15

oscillator (5) is then determined by the equations

) 1 +S|n2(0) {[61 €,C0920)
z=—§§(t)sin20,

_ (30 —€3SiN(26)]P ]
b= w+ £(1)sirR0. ° P}
ic di i 1 9’P
System(30) belongs to the class of stochastic differential n Zsin(ZH)[ez Sin(20)— €5 cos{Zﬁ)]F.
z

equations of the form

= FO(u)+aF O (u,t), (31) (33

whereF(9(u) represents a sure function ofperturbed by a e remark that this equation is correct to the second order in
stochastic functlomF(l)(u t) with a<1. Indeed, one can &(t) in the general case of colored noise; in the special case

reduce the systerf80) to the form(31) by defining the vec- when the nois&(t) is white however, it can be shown that
tors of Eq.(31) as Eqg. (33 becomesexact
Once we dispose of the Fokker-Planck equd88h for
the general distributiorP(z,6,t), we can consider that, in
. - Zﬁ(t)Sir\(Zﬁ) order to evaluate the average of the transmission coefficient
u—( ) F(O)—( ) F(1)= (22), we actually need only the probability distribution for
® the radial variable (or for the equivalent logarithmic vari-
ablez). Therefore, we do not have to solve Eg3) in all its
generality and we can instead consider the restricted Fokker-
with a=+/ gz(t)). It is known that a stochastic differential Planck equation
equation of the form31) can be associated with a partial
differential equation whose solutioR(u,t) represents the J (2w
probability distribution for the random variable [8]. This 7)o P(6,z,t)do
partial differential equation can be written as

0 1 .
Zg(t)smze

2

_1 7 1 46 in(46 ﬁPda
2 &ul[ F(O)P(u )] ~8Jo {[1—cog46)]e,—sin( )63}&22
o -7 +1 277{261005{20)
3 [ { o S e o) z
d(u) _62[14'005{40)]—63Sin(4t9)}%d0
xd(u_T) P(u,t)dT]-i-o(az), (32)

obtained by integrating Eq33) over the redundant angular
where u' stands for the flow defined by the deterministic variable. To proceed further we assume that, after a short-
equationUzF(O)(u), d(u=7)/d(u) is the Jacobian of the lived transient, the probability distribution takes the form

transformatioru—u~", and the symbob(«?) represents the 1
om!tted terms of order hlgher than the second in the pertur- P(6,2,t)= — P(z.1). (34)
bative parametew. Thus, in the case of weak stochasticity 2
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This assumption can be justified on the grounds that, fomula (37) the exponential factor is determined by the long-
weak noise, the dynamics of the angular variable is approxitime behavior of the random oscillatgwhich is correctly
mately ruled by the equatiofi=w. This implies that, after a described in our approakfwhile the preexponential factor is
sufficiently long time(of the order of some periodsiZw), ~ Strongly influenced by the short-time dynamics of the oscil-
the angular variable will have swept the whole intervallator. It is interesting to notice that an incorrect preexponen-
[0:27] in an almost uniform way. That makes it reasonabletial factor proportional tol(./L)*? was also obtained if7]
to suppose that, for times>27/w, the angular distribution Studying a continuous solid-state model with a different ap-
is flat (excluding of course the exceptional case when Proach. In that study, however, the physical meaning of the
=0, i.e., when the energy value lies in a neighborhood of thédopted simplifying hypotheses was not so transparent as in
band edge the present case, where the analogy between motletnd

As a consequence of the hypothetSd), one eventually (5) makes it possible to gain an intuitive comprehension of

gets the reduced Fokker-Planck equation forzhariable ~ the mathematical approximations.
Beside allowing one to compute the average of the trans-

9P 9P 92P mission coefficient, the probability distributid86) makes it
&—(z,t)z)\ _E(Z’tH —2(z,t) , (35 possible to determine the average value of other physical
z 9z quantities which are relevant for a thorough description of

the transport properties of a disordered lattice. The logarithm
of the transmission coefficient and the resistaf24 are
standard choices for the complete analysis of the conduc-
tance problem.

The interest for the logarithm of the transmission coeffi-

1 ' (36) cient stems from the fact that, unlike the transmission coef-
V2Nt ficient itself, the logarithm I, is a self-averagingvariable

and therefore a physically more sound parameter for the defi-

This solution satisfies the initial conditid?(z,t=0)= §(z), nition of the transport features of the disordered finite lattice
i.e., we have assumed that at timne0 one hag =1, asis  (see, e.g.[7]). In the present framework, the average of the
the case for the initial condition®; and P,. The initial  logarithmic transmissivity can be computed as follows. First,
condition, however, is somewhat arbitrary, since Bp) is  we observe again that in the localized regime condit2s)
correct only for timed>2m/w. is fulfilled for almost every realization of the disorder so that

Knowledge of the distributior{36) makes it possible to we can write
compute the average transmission coefficient in the localized

where\ is the Lyapunov exponeril6). Equation(35) has
the form of a heat equation with a constant drift; its solution

is therefore
F{ (z—\t)?
exg — ———

P(z,t)= o

regime. Using probabilityf36) we can actually evaluate ex- 2
pression(29) and thus obtain (InT)= |n1+r2(|_) :
A 2 7l L This expression can be put in the equivalent form
(TU= | Trexpag P(2L)dz= \/Iexp( - 7)

(37

> . (39

1 N We now observe that for every>0 the logarithm satisfies
——In(T)=%. (39 the relations &In(1+x)<x; hence the last term on the right-
L 2 hand side(rhs) of the preceding equation must obey

1 1
INE =1, (40)

(INT.)=—{In(r?))+In(2)— < In 14—;2

As a result, in the limitlL —c< one has

the transmission coefficient decreases exponentially with the
width of the disordered lattice and they provide the correct
rate of exponential decay. It must be pointed out, however, o
that expressioli37) fails to reproduce the exact preexponen-Where we have made use of distributi@®) to evaluate the
tial factor, which actually scales asl.(L)¥2 (for average of ¥P. Relations(39) and (40) imply that in the
approximation-free results sd@] and references thergin limit L— one has

This partial shortcoming must be attributed to the two ap-

proximations made in the derivation of formulgv), i.e., (i) _ E(InT )= E(In r(L))

assumption(28) that allows the substitution of the exact ex- L YL '

pression(22) for the transmission coefficient with the sim- o ] )

plified form (29) and (ii) hypothesis(34) about the angular Substltgtlng in the rhs qf this equgtlon the average value of
dependency of the probability distributio(6,z,t). Both  the variablez=Inr one finally obtains

assumptions are admittedly incorrect for very short times, L
i.e., for distances. which are small on the length scale de- (INT)=—-2—
fined byl, . Thus we are led to the conclusion that in for-

1+ =

Formulas(37) and(38) show that in the localized regime
0<< In
r

I
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which shows that the average logarithm of the transmissiomhere\ is the Lyapunov exponenil5). This result shows
coefficient decreases linearly with the lattice width in thethat the energy of the random oscillator grows exponentially
localized regime. at large timegunless one has=0) and that the rateg of

A third quantity that represents a meaningful statisticalthis exponential increase is equalftar times the Lyapunov
characteristic of the disordered lattice is given by the inversexponent. We could have computed the energy growth rate
of the transmission coefficient, i.e., by the resista(@®. As  also with a different approach, taking Van Kampen’'s equa-
we did in the previous cases, we rely on the condif@®) to  tion (25) as a starting point. In fact, EGR5) determines the
write the resistance in the form time evolution of the second moments of the position and
momentum of the random oscillator; it is therefore possible
to obtain the result43) by determining the eigenvalue of the
evolution matrix(26) with the largest real part.

We would like to note that, in some papers devoted to
Starting from this expression and making use of distributiorstochastic classical systems, the rate of orbit divergence
(36) we obtain (Lyapunov exponentis assumed to be a facttwo less than

the energy growth. The confusion probably stems f{amd
4L is equivalent tpthe incorrect assumption that for large times
(RL>~9XF{ |—> (42 the average of the logarithm of the energy and the logarithm
- of the average energy coincide, whereas the real relation is

This expression shows that the average value of the resis- 1 1
tance increases exponentially so that the resistance has a ={nr?(t))= = In(ré(t)),
multiplicative rather that additive behavior as a function of t 2t
the length of the disordered lattice. This conclusion obvi- .. . -
valid in the limitt—oo.

ously ceases to be valid in the special case in which long- .

. . . As a last remark, we point out another consequence of the
range correlations of the random potential make the localiza- . ; .
. . o ; . . “correspondence between the resistance of a disordered lattice
tion lengthl, diverge: in this case the disordered lattice

becomes transparent. We underline that, using the reci aend the energy of the stochastic oscillat®). It is well

. . . nown that in the localized regime the resistarRe is a
given in Ref.[1] for the Anderson model—or the prescrip- |\ coie overa edjuantity, since the relative fluctuations of
tions of Sec. IV for the continuous modgl8)—it is possible 9 Y,

to define a random potential such that the correspondinthIS quantity do not disappear in the macroscopic limit. In-

Lyapunov exponent is zero in certain frequency intervals an ﬁgdﬁslfev)clr?ee(;?sptlr?gutt?:(sae\i;et?%%n\:aluutge) tﬁz tg\?errzsit?)??ﬁe
positive elsewhere. As a consequence, the disordered lattiée . pL 9

. . Square of the resistan¢dl), we obtain that the root-mean-

generated by such a potential will be transparent for elec: . . .

) . . - _square deviation of the resistance behaves like

trons with the appropriate energies and opaque otherwisé.

RLz%[1+r2(L)]. (41)

This opens the possibility of projecting efficient electronic SR=((RA(R,)~2—1)Y2xexp(2L/1..) (44)
filters and agrees with the recent experimental findings dis- - LA o
cussed in2]. i.e., it grows exponentially with the length of the random

As a further consideration, we observe that H3) and |attice. This result is well known to solid-state physicists, but
(42) show that in the localized regime the inverse of thejt may be of some interest to reformulate it in terms of the
average transmission coefficient dagst coincide with the dynamics of the stochastic oscillatts). Then we can ex-

average of the resistance press the meaning of the res(##) by saying that the energy
. . of the stochastic oscillatdb) is a quantity whose asymptotic
(TLH#(TL) value can fluctuate wildly from one noise realization to an-
other. Relative fluctuations do not vanish at long times; this
in contrast to the ballistic regime case. means that the concept of non-self-averaging quantity can

At this point we wish to remark that the interest of ex- find useful applications also in the field of stochastic classi-
pression(42) goes beyond the definition of the transport cal systems.

properties of a finite disordered lattice. This is so because the
resistanc_eR,_ is strictly related to the energy’ of the ran- VI. CONCLUSIONS
dom oscillator(5), as clearly shown by Eq41). The expo-
nential increase of the average resistance can therefore be The first part of this paper is devoted to a thorough dis-
reinterpretated as energetic instability of the random oscillacussion of the analogies existing between the Anderson
tor (5) on long time scales and formu{d2) can be rewritten model(1) with diagonal correlated disorder and the stochas-
in the alternative form tic oscillator(5) with frequency perturbed by a colored noise
with correlation function(7). Our analysis shows that the
(r?(t))=exp(yet) for t>1, two systems are equivalent in the sense that there exists a
close correspondence between electronic states on one hand
with and space trajectories on the other. Quantitatively, this corre-
spondence manifests itself in the identity of the inverse lo-
ye=4N\, (43 calization length for electronic states with the exponential
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rate of divergence of nearby oscillator trajectories. It is re-erties of the energy of the stochastic oscillator from the
markable that this correspondence holds in spite of the fadtnowledge of statistical features of the resistance of disor-
that the Anderson model is quantum and discfetespace¢  dered wires. In passing we also clarify the relation between
whereas the random oscillator is classical and contindious energetic and orbit instabilities for the random oscill&@)x
time). The analogy between the modéls and(5) has been In conclusion, we believe that the bridge built among the
already investigated ifb] for the basic case of uncorrelated fie|ds of solid-state disordered systems and classical stochas-
noise and disorder; however, the present work extends thg models represents a useful way to study the properties of
previous conclusions to the caseanfrrelated disorder both classes of systems. The present paper can be considered
In the second part of the work we discuss some implicags an illustration of how this dual approach works, allowing

tions of the parallelism between the modéls and (5). In one to solve old problems by putting them in a new perspec-
the first place, we translate the concept of “mobility edge” jye.

from the field of solid state physics to that of stochastic sys-

tems, showing how time correlations of the frequency noise
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